Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001 ## Unusual phonon softening in the Kondo lattice CeCu₂ Michael Loewenhaupt¹, Ulrike Witte², Sirko Kramp¹, Markus Braden³, Pavel Svoboda⁴ - ¹ TU Dresden, IAPD, D-01062 Dresden (Germany) - ² Hahn-Meitner-Institut Berlin, Glienicker Str. 100, D-14109 Berlin (Germany) - ³ LLB Saclay, F-91191 Gif-Sur-Yvette Cedex (France) - ⁴ Charles University, Dept. of Electronic Structures, Ke Karlovu 5, 121 16 Praha (Czech Republic) CeCu₂ is a Kondo lattice with antiferromagnetic order below 3.5 K and a Kondo temperature of about 6 K. Earlier neutron scattering experiments (temperature dependent time-of-flight measurements on polycrystalline samples) lead to the assumption of a coupling between a crystal field transition (from the first to the second excited state) and some phonons around 14 meV*. Newly performed inelastic neutron measurements on a CeCu₂ single crystal confirm this assumption. We find an unusually strong (up to 15%), symmetry-dependent softening of certain phonons with increasing temperature. At the same time, the magnetic response is strongly broadened by the coupling to the phonons. The findings for CeCu₂ are discussed in relation to the similar observation of a coupling between electronic and lattice degrees of freedom in CeAl₂[†] and YbPO₄[‡]. ^{*}M. Loewenhaupt et al., JMMM **76&77** (1988) 415 and Physica B**163** (1990) 427 [†]M. Loewenhaupt et al., PRL **42** (1979) 1709 and Thalmeier and Fulde, PRL **49** (1982) 1588 [‡]C.-K. Loong, M. Loewenhaupt, J.C. Nipko, M. Braden, L.A. Boatner, PR B60 (1999) R12 549